曙海教育集团
全国报名免费热线:4008699035 微信:shuhaipeixun
或15921673576(微信同号) QQ:1299983702
首页 课程表 在线聊 报名 讲师 品牌 QQ聊 活动 就业
 

Hadoop大数据处理高级工程师培训

 
   班级规模及环境--热线:4008699035 手机:15921673576( 微信同号)
       坚持小班授课,为保证培训效果,增加互动环节,每期人数限3到5人。
   上课时间和地点
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦 【广州分部】:广粮大厦 【西安分部】:协同大厦
最近开课时间(周末班/连续班/晚班):即将开课,详情请咨询客服!
   实验设备
     ☆资深工程师授课
        
        ☆注重质量 ☆边讲边练

        ☆合格学员免费推荐工作
        ★实验设备请点击这儿查看★
   质量保障

        1、培训过程中,如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
        2、课程完成后,授课老师留给学员手机和Email,保障培训效果,免费提供半年的技术支持。
        3、培训合格学员可享受免费推荐就业机会。

课程大纲
 
 

课程对象
   各地政府云计算物联网产业相关负责人,各企业CIO、信息中心负责人、技术总监,云计算中心负责人,云计算产业投资团队,云计算应用开发商,云计算硬件设备供应商,云服务提供商,高校、科研院所云计算项目负责人。
   各企业大数据架构师、技术总监、数据挖掘负责人、数据挖掘开发工程师
课程目标
   1、了解Hadoop的历史及目前发展的现状、以及Hadoop的技术特点,从而把握分布式计算框架及未来发展方向,在大数据时代能为企业的技术选型及架构设计提供决策参考。
   2、全面掌握Hadoop的架构原理和使用场景,并通过贯穿课程的项目进行实战锻炼,从而熟练使用Hadoop进行MapReduce程序开发。课程还涵盖了分布式计算领域的常用算法介绍,帮助学员为企业在利用大数据方面体现自身价值。
   3、深入理解Hadoop技术架构,对Hadoop运作机制有清晰全面的认识,可以独立规划及部署生产环境的Hadoop集群,掌握Hadoop基本运维思路和方法,对Hadoop集群进行管理和优化。
  
培训特色
   注重应用:分析国内实际情况,结合国际、国内成功经验。Hadoop采用实战的项目,让学员在短时间内掌握Hadoop的搭建与配置。并进行高效的大数据清洗和分析。形式灵活:互动课堂、免费技术沙龙、提供云计算项目建设咨询、大数据Hadoop平台的搭建。


课程大纲
模块一
Hadoop在云计算技术的作用和地位
◆ 传统大规模系统存在的问题
◆ Hadoop概述
◆ Hadoop分布式文件系统   
◆ MapReduce工作原理    
◆ Hadoop集群剖析      
◆ Hadoop生态系统对一种新的解决方案的需求
◆ Hadoop的行业应用案例分析
◆ Hadoop在云计算和大数据的位置和关系
◆ 数据开放,数据云服务平台(DAAS)时代
◆ Hadoop平台在数据云平台(DAAS)上的天然优势
◆ 数据云平台(DAAS 平台)组成部分
◆ 互联网公共数据大云(DAAS)案例
◆Hadoop构建构建游戏云(Web Game Daas)平台

模块二
Hadoop生态系统介绍和演示
◆ Hadoop HDFS 和 MapReduce
◆ Hadoop数据库之HBase
◆ Hadoop数据仓库之Hive
◆ Hadoop数据处理脚本Pig
◆ Hadoop数据接口Sqoop和Flume,Scribe DataX
◆ Hadoop工作流引擎 Oozie
◆ 运用Hadoop自下而上构建大规模企业数据仓库
◆ 暴风影音数据仓库实战解析

模块三
Hadoop组件详解
◆ Hadoop HDFS 基本结构
◆ Hadoop HDFS 副本存放策略
◆ Hadoop NameNode 详解
◆ HadoopSecondaryNameNode 详解
◆ Hadoop DataNode 详解
◆ Hadoop JobTracker 详解
◆ Hadoop TaskTracker 详解
◆ Hadoop Mapper类核心代码
◆ Hadoop Reduce类核心代码
◆ Hadoop 核心代码

模块四
Hadoop安装和部署
◆ Hadoop系统模块组件概述
◆ Hadoop试验集群的部署结构
◆ Hadoop 安装依赖关系
◆ Hadoop 生产环境的部署结构
◆ Hadoop集群部署
◆ Hadoop 高可用配置方法
◆ Hadoop 集群简单测试方法
◆ Hadoop 集群异常Debug方法
◆ Hadoop安装部署实验
◆ Red hat Linux基础环境搭建
◆ Hadoop 单机系统版本安装配置
◆ Hadoop 集群系统版本安装和启动配置
◆ 使用 Hadoop MapReduce Streaming 快速测试系统
◆ Hadoopcore-site,hdfs-site,mapred-site 配置详解

模块五
Hadoop集群规划
◆ Hadoop 集群内存要求
◆ Hadoop集群磁盘分区
◆ 集群和网络拓扑要求
◆ 集群软件的端口配置
◆ 针对NameNode Jobtracker DataNode TaskTracker Hiveserver 等不同组件需求推荐服务器配置

模块六
MapReduce 算法原理
◆ Hadoop MapReduce 算法的原理和优化思想
◆ 灵活运用MapReduce 实现算法
◆ 运用MapReduce 构建数据库算法
◆ Select Sort GrougBy Sum Count
◆ Join 新进流失算法
◆ 使用 Y-Smart 快速转换SQL 为MapReduce 代码

模块七
编写MapReduce高级程序
◆ 使用 Hadoop MapReduce Streaming 编程
◆ MapReduce流程     
◆ 剖析一个MapReduce程序
◆ 基本MapReduceAPI概念 
◆ 驱动代码 Mapper、Reducer
◆ Hadoop流
◆ API 使用Eclipse进行快速开发       
◆ 新MapReduce API
◆ MapReduce的优化
◆ MapReduce的任务调度
◆ MapReduce编程实战
◆ 如何利用其他Hadoop相关技术,包括Apache Hive, Apache Pig,Sqoop和Oozie等
◆ 满足解决实际数据分析问题的高级Hadoop API
◆ Hadoop Streaming 和 Java MapReduce Api 差异。
◆ MapReduce 实现数据库功能
◆ 利用Combiners来减少中间数据
◆ 编写Partitioner来优化负载平衡
◆ 直接访问Hadoop分布式文件系统(HDFS)
◆ Hadoop的join操作
◆ 辅助排序在Reducer方的合并
◆ 定制Writables和WritableComparables
◆ 使用SequenceFiles和Avro文件保存二进制数据
◆ 创建InputFormats OutputFormats
◆ Hadoop的二次排序
◆ Hadoop的海量日志分析
◆ 在Map方的合并   

模块八
集成Hadoop到现有工作流
及Hadoop API深入探讨
◆ 存储系统
◆ 利用Sqoop从关系型数据库系统中导入数据到Hadoop
◆ 利用Flume导入实时数据到Hadoop
◆ ToolRunner介绍、使用MRUnit进行测试
◆ 使用Configure和Close方法来进行Map/Reduce设置和关闭
◆ 使用FuseDFS和Hadoop访问HDFS
◆ 使用分布式缓存(Distributed Cache)
◆ 直接访问Hadoop分布式文件系统(HDFS)
◆ 利用Combiners来减少中间数据
◆ 编写Partitioner来优化负载平衡

模块九
使用Hive和Pig开发及技巧
◆ Hive和Pig基础       
◆ Hive的作用和原理说明
◆ Hadoop仓库和传统数据仓库的协作关系
◆ Hadoop/Hive仓库数据数据流
◆ Hive 部署和安装
◆ Hive Cli 的基本用法
◆ HQL基本语法
◆ 运用Pig 过滤用户数据 
◆ 使用JDBC 连接Hive进行查询和分析
◆ 使用正则表达式加载数据
◆ HQL高级语法
◆ 编写UDF函数
◆ 编写UDAF自定义函数
◆ 基于Hive脚本内嵌Streaming 编程

模块十
Hbase安装和使用
◆ Hbase 安装部署      
◆ Hbase原理和结构
◆ Hbase 运维和管理
◆ 使用Hbase+Hive 提供 OLAP SQL查询能力
◆ 使用Hbase+Phoenix提供 OLTP SQL能力
◆ 基于Hbase 的时间序列数据库 OpenTsDb 结构解析

模块十一
Hadoop2.0 集群探索
◆ Hadoop2.0 HDFS 原理
◆ Hadoop2.0 Yarn 原理
◆ Hadoop2.0 生态系统
◆ 基于Hadoop2.0 构建分布式系统

模块十二
Hadoop企业级别案例解析
◆ Hadoop 结构化数据案例
◆ Hadoop 非结构化案例
◆ Hbase 数据库案例
◆ Hadoop 视频分析案例
◆利用大数据分析改进交通管理
◆区域医疗大数据应用案例
◆银联大数据数据票据详单平台
◆广东移动省公司请账单系统
◆上海电信网络优化
◆某通信运营商全国用户上网记录
◆浙江台州市智能交通系统
◆移动广州详单实时查询系统
◆ 跨区域实时视频监控系统

模块十三
RedHadoop 企业版本
◆ 运用RedHadoop快速构建服务集群
◆ 运用RedHadoop DW 构建数据仓库
◆基于RedHadoop Hive构建数据仓库平台
◆灵活运用 Hive 加速游戏数据仓库
◆基于Pig+OpenCV大规模图像人脸识别

模块十四
Spark原理和入门
◆ Spark原理;Spark的架构图;Spark运行模式介绍
◆ —local;—standalone;—messos;—yarn;Spark的RDD
◆ 什么是RDD;RDD的种类;—Tranformation;—Action
◆ Spark的存储级别;Cache介绍;Spark的容错原理
◆ Lineage容错;Checkpoint容错;RDD的创建
◆ 案例—统计单词的个数







 

android开发板
linux_android开发板
fpga图像处理
曙海培训实验设备
fpga培训班
 
本课程部分实验室实景
曙海实验室
实验室
曙海培训优势
 
  备案号:沪ICP备08026168号 .(2014年7月11)...................
友情链接:Cadence培训 ICEPAK培训 EMC培训 电磁兼容培训 sas容培训 罗克韦尔PLC培训 欧姆龙PLC培训 PLC培训 三菱PLC培训 西门子PLC培训 dcs培训 横河dcs培训 艾默生培训 robot CAD培训 eplan培训 dcs培训 电路板设计培训 浙大dcs培训 PCB设计培训 adams培训 fluent培训系列课程 培训机构课程短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班培训 南京 NS3培训 OpenGL培训 FPGA培训 PCIE培训 MTK培训 Cortex训 Arduino培训 单片机培训 EMC培训 信号完整性培训 电源设计培训 电机控制培训 LabVIEW培训 OPENCV培训 集成电路培训 UVM验证培训 VxWorks培训 CST培训 PLC培训 Python培训 ANSYS培训 VB语言培训 HFSS培训 SAS培训 Ansys培训 短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班 曙海 教育 企业 学院 培训课程 系列班 长期课程列表实践课程高级课程学校培训机构周末班 短期培训系列课程培训机构 曙海教育企业学院培训课程 系列班