班级规模及环境--热线:4008699035 手机:15921673576( 微信同号) |
每个班级的人数限3到5人,互动授课, 保障效果,小班授课。 |
上间和地点 |
上部份地点:【上海】同济大学(沪西)/新城金郡商务楼(11号线白银路站)【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院【北京分部】:北京中山学院/福鑫大楼【南京分部】:金港大厦(和燕路)【武汉分部】:佳源大厦(高新二路)【成都分部】:领馆区1号(中和大道)【沈阳分部】:沈阳理工大学/六宅臻品【郑州分部】:郑州大学/锦华大厦【石家庄分部】:河北科技大学/瑞景大厦 最近开间(周末班/连续班/晚班):2019年1月26日 |
实验设备 |
◆小班教学,教学效果好 ☆注重质量☆边讲边练 ☆合格学员免费推荐工作 ★实验设备请点击这儿查看★ |
质量保障 |
1、培训过程中,如有部分内容理解不透或消化不好,可免费在以后培训班中重听; 2、课程完成后,授课老师留给学员手机和Email,保障培训效果,免费提供半年的技术支持。 3、培训合格学员可享受免费推荐就业机会。☆合格学员免费颁发相关工程师等资格证书,提升职业资质。专注高端技术培训15年,曙海学员的能力得到大家的认同,受到用人单位的广泛赞誉,曙海的证书受到广泛认可。 |
部份程大纲 |
|
第一讲 Eviews入门
1.Eviews工作界面介绍
2.Eviews工作文件及常用对象介绍
3.变量的建立,变量中数据的录入
4.删除变量或观察值
5.样本区间的调整
6.变量的排序
7.通过数学运算生成新的变量
8.工作文件的保存与EViews软件的退出
9.如何调用已保存过的工作文件
第二讲 Eviews图形对象介绍
1.关于单个变量的作图
2.关于多个变量的作图
第三讲 描述性统计分析
1.序列窗口下的描述性统计分析
2.序列组窗口下的描述性统计分析
第四讲 一元线性回归模型
1.做两个变量的散点图,从而看两个变量是否具有线性关系。
2.通过建立方程对象的方式来估计一个方程
3.对方程估计结果的解释与评价
4.在回归估计结果中显示方程的三种形式
5.如何根据我们估计的回归方程计算需求的价格弹性
6.如何查看因变量的实际值、拟合值和回归方程的残差
7.如何用我们建立的方程进行预测
第五讲 多元线性回归模型
1.做以因变量为横轴,多个自变量为纵轴的散点图,
2.建立组对象查看自变量的相关系数矩阵。
3.以建立方程对象的方式来建立多元线性回归模型。
4.对模型结果的解释和评价。
5.我们选取删除引起共线性的变量的办法来克服多重共线性。
6.对我们消除共线性后的模型进行检验,最后对模型进行解释和评价
第六讲 非线性回归模型
1.双对数模型。
2.半对数模型。
3.倒数模型。
第七讲 虚拟变量模型
1.虚拟变量的定义及意义。
2.如何通过加项的形式将虚拟变量引入到模型中去。
3.如何通过乘项的方式将虚拟变量引入到模型中去。
4.模型中加入季节虚拟变量。
第八讲 单个经济时间序列的趋势模型、季节调整、分解与平滑
1.趋势模型。
2.季节调整方法。
3.HP滤波和BP滤波
4.指数平滑方法
第九讲 离散因变量与受限因变量模型
1.二元选择模型
2.排序选择模型
3.计数模型
4.删截回归模型(censored regression model)
5.截尾回归模型(Truncated Regression Model)
第十讲 分布滞后模型
1.回归方程残差的序列相关性检验
2.回归方程残差的自回归模型(AR Error Model)
3.自回归模型
4.有限分布滞后模型
5.自回归分布滞后模型
第十一讲 时间序列ARIMA模型
1.如何通过观察时间序列的自相关图和偏自相关图来判断时间序列的平稳性。
2.检验序列是否可以通过差分的方式来实现平稳性。
3.通过观察自相关图和偏自相关图对平稳后的序列确定AR和MA和SAR的阶数。
4.对估计的模型进行检验,包括显著性检验和残差序列的相关性检验。
第十二讲 单位根检验和基于残差的协整检验
1.时间序列数据的平稳性说明
2.时间序列平稳性的DF和ADF单位根检验
3.时间序列平稳性的DFGLS单位根检验
4.时间序列平稳性的PP单位根检验
5.时间序列平稳性的KPSS单位检验
6.时间序列平稳性的ERS单位根检验
7.时间序列平稳性的NP单位根检验
8.协整检验
9.建立误差修正模型
第十三讲 自回归条件异方差模型
1.通过日收盘价生成对数收益率变量
2.对数收益率序列的平稳性检验
3.均值方程的确定以及残差的序列相关检验
4.对残差平方的序列相关检验
5.对残差平方做线形图
6.对均值方程的残差做ARCH-LM检验
7.建立各种形式的ARCH模型并对新的残差序列进行ARCH—LM检验。
8.根据我们建立的ARCH模型对收益率序列的方差进行预测
第十四讲 联立方程计量经济学模型
1.联立方程模型的介绍
2.联立方程模型的概念以及分类
3.联立方程模型的识别
4.联立方程模型的估计
第十五讲 向量自回归模型
1.VAR模型的有关概念(非结构化的向量自回归模型)
2.有关SVAR模型的有关概念。
3.VAR模型的识别条件
4.SVAR模型的短期约束
5.格兰杰因果关系检验
6.VAR模型滞后阶数p的的确定。
7.脉冲响应函数。
8.方差分解
9.Johansen协整检验
10.向量误差修正模型
第十六讲 eviews矩阵计算
1.矩阵的建立
2.方阵的行列式.
3.矩阵的加法 4.矩阵的乘法
5.矩阵的秩(标量) 6.矩阵的迹(标量)
7.矩阵的转置 8.矩阵的逆
9.求矩阵各个列向量的相关系数
10.建立对称矩阵
11.对称矩阵的特征向量
12.矩阵的内积
13.用eviews解线性方程组
第十七讲 Eviews编程应用
1.如何把以前一年为基期计算的居民消费价格指数换算成以某一年为
基期计算的居民消费价格指数。
2.如何把名义变量(分类变量)转换成虚拟变量
第十八讲 面板数据模型
1.面板数据和面板数据模型的简单介绍
2.如何将面板数据导入到Eviews中?
3.面板数据模型的分类
4.固定影响(效应)变截距模型
5.随机影响(效应)变截距模型
6.Hausman检验
7.固定影响变系数模型
8.随机影响变系数模型
9.面板数据的单位根检验
10.面板数据的协整检验
第十九讲 方差膨胀因子
1.方差膨胀因子计算公式
2.通过建立辅助回归方程的形式来计算方差膨胀因子
3.以矩阵计算的方式来计算变量的方差膨胀因子
4.方差膨胀因子大小评价准则
第二十讲 分位数回归
1.分位数回归简单介绍
2.分位数回归的优势
3.分位数回归的操作步骤
4.分位数回归的结果分析
第二十一讲 极大似然估计
1.极大似然估计的原理介绍
2.多元线性回归的对数似然函数及其推导
3.用EViews软件实现多元线性回归的极大似然估计
4.GARCH(1,1)模型的对数似然函数
5.用EViews软件实现GARCH(1,1)模型极大似然估计
|