曙海教育集团
全国报名免费热线:4008699035 微信:shuhaipeixun
或15921673576(微信同号) QQ:1299983702
首页 课程表 在线聊 报名 讲师 品牌 QQ聊 活动 就业
 
Analyzing Big Financial Data with Python培训

 
   班级规模及环境--热线:4008699035 手机:15921673576( 微信同号)
       坚持小班授课,为保证培训效果,增加互动环节,每期人数限3到5人。
   上课时间和地点
开课地址:【上海】同济大学(沪西)/新城金郡商务楼(11号线白银路站)【深圳分部】:电影大厦(地铁一号线大剧院站) 【武汉分部】:佳源大厦【成都分部】:领馆区1号【沈阳分部】:沈阳理工大学【郑州分部】:锦华大厦【石家庄分部】:瑞景大厦【北京分部】:北京中山学院 【南京分部】:金港大厦
最新开班 (连续班 、周末班、晚班):即将开课,详情请咨询客服!
   实验设备
     ☆资深工程师授课
        
        ☆注重质量 ☆边讲边练

        ☆合格学员免费推荐工作
        ★实验设备请点击这儿查看★
   质量保障

        1、培训过程中,如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
        2、课程完成后,授课老师留给学员手机和Email,保障培训效果,免费提供半年的技术支持。
        3、培训合格学员可享受免费推荐就业机会。

课程大纲
 
  • Introduction
  • Understanding the Fundamentals of Python
  • Overview of Using Technology and Python in Finance
  • Overview of Tools and Infrastructure
  • Python Deployment Using Anaconda
    Using the Python Quant Platform
    Using IPython
    Using Spyder
    Getting Started with Simple Financial Examples with Python
  • Calculating Implied Volatilities
    Implementing the Monte Carlo Simulation
    Using Pure Python
    Using Vectorization with Numpy
    Using Full Vectoriization with Log Euler Scheme
    Using Graphical Analysis
    Using Technical Analysis
    Understanding Data Types and Structures in Python
  • Learning the Basic Data Types
    Learning the Basic Data Structures
    Using NumPy Data Structures
    Implementing Code Vectorization
    Implementing Data Visualization in Python
  • Implementing Two-Dimensional Plots
    Using Other Plot Styles
    Implementing Finance Plots
    Generating a 3D Plot
    Using Financial Time Series Data in Python
  • Exploring the Basics of pandas
    Implementing First and Second Steps with DataFrame Class
    Getting Financial Data from the Web
    Using Financial Data from CSV Files
    Implementing Regression Analysis
    Coping with High-Frequency Data
    Implementing Input/Output Operations
  • Understanding the Basics of I/O with Python
    Using I/O with pandas
    Implementing Fast I/O with PyTables
    Implementing Performance-Critical Applications with Python
  • Overview of Performance Libraries in Python
    Understanding Python Paradigms
    Understanding Memory Layout
    Implementing Parallel Computing
    Using the multiprocessing Module
    Using Numba for Dynamic Compiling
    Using Cython for Static Compiling
    Using GPUs for Random Number Generation
    Using Mathematical Tools and Techniques for Finance with Python
  • Learning Approximation Techniques
    Regression
    Interpolation
    Implementing Convex Optimization
    Implementing Integration Techniques
    Applying Symbolic Computation
    Stochastics with Python
  • Generation of Random Numbers
    Simulation of Random Variables and of Stochastic Processes
    Implementing Valuation Calculations
    Calculation of Risk Measures
    Statistics with Python
  • Implementing Normality Tests
    Implementing Portfolio Optimization
    Carrying Out Principal Component Analysis (PCA)
    Implementing Bayesian Regression using PyMC3
    Integrating Python with Excel
  • Implementing Basic Spreadsheet Interaction
    Using DataNitro for Full Integration of Python and Excel
    Object-Oriented Programming with Python
  • Building Graphical User Interfaces with Python
  • Integrating Python with Web Technologies and Protocols for Finance
  • Web Protocols
    Web Applications
    Web Services
    Understanding and Implementing the Valuation Framework with Python
  • Simulating Financial Models with Python
  • Random Number Generation
    Generic Simulation Class
    Geometric Brownian Motion
    The Simulation Class
    Implementing a Use Case for GBM
    Jump Diffusion
    Square-Root Diffusion
    Implementing Derivatives Valuation with Python
  • Implementing Portfolio Valuation with Python
  • Using Volatility Options in Python
  • Implementing Data Collection
    Implementing Model Calibration
    Implementing Portfolio Valuation
    Best Practices in Python Programming for Finance
  • Troubleshooting
  • Summary and Conclusion
  • Closing Remarks
 
  备案号:沪ICP备08026168号 .(2014年7月11)...................